
ORIGINAL ARTICLE

Quantitative risk-based requirements reasoning

Received: 22 May 2002 / Accepted: 15 September 2002 / Published online: 25 February 2003
� Springer-Verlag London Limited 2003

Abstract At NASA we have been developing and ap-
plying a risk management framework, ‘‘Defect Detec-
tion and Prevention’’ (DDP). It is based on a simple
quantitative model of risk and is supported by custom
software. We have used it to aid in study and planning
for systems that employ advanced technologies. The
framework has proven successful at identifying prob-
lematic requirements (those which will be the most dif-
ficult to attain), at optimizing the allocation of resources
so as to maximize requirements attainment, at identify-
ing areas where research investments should be made,
and at supporting tradeoff analyses among major alter-
natives. We describe the DDP model, the information
that populates a model, how DDP is used, and its tool
support. DDP has been designed to aid decision making
early in development. Detailed information is lacking at
this early stage. Accordingly, DDP exhibits a number of
strategic compromises between fidelity and tractability.
The net result is an approach that appears both feasible
and useful during early requirements decision making.

Keywords Cost–benefit analysis Æ Decision making Æ
Information visualization Æ Requirements Æ Risk Æ
Tradeoffs

1 Introduction

At NASA we have been developing and applying our
risk management framework, ‘‘Defect Detection and
Prevention’’ (DDP), for several years. DDP has been
designed to aid decision making during the earlier phase
of advanced technology and system development. This is
an important but challenging time of the life cycle. It is

important because these early decisions have the most
leverage to influence the development to follow. It is
challenging because information on which to base those
decisions is incomplete and uncertain, and in the case of
advanced technologies and systems there is little past
experience from which to extrapolate.

As a design matures there are other decision support
techniques that better capitalize upon knowledge of
design details. For example, probabilistic risk assess-
ment techniques (e.g., fault tree analysis, Bayesian
methods) compute overall system reliability from design
knowledge of how the system is composed of those
components and estimates of individual component
reliabilities.

Where there has been past experience at developing
similar systems, parametric models (e.g., COCOMO for
cost and schedule estimation) can be useful for making
predictions for the project at hand. Eventually this
expertise can be cast into ‘‘product families’’.

In contrast, DDP aims to fill the niche of early decision
making for advanced technology and system develop-
ment. It does so by using a simple quantitative model of
risk as the foundation for reasoning. The riskmodel itself,
the information that populates it, the processes we follow
to apply it, and the tool support we give it are all closely
coupled. They each exhibit strategic compromises from
what might be thought of as a ‘‘perfect’’ solution (perfect
model, perfect process, perfect tool). The focus of this
paper is on the nature of and justification for these stra-
tegic compromises, and how they facilitate feasible useful
early requirements decision making.
The paper is organized as follows:

– Section 2 describes the quantitative risk model on
which DDP is founded.

– Section 3 describes the way DDP is used, including
its lightweight process and modest tool support.

– Section 4 describes the representation of informa-
tion that comprises a DDP model.

– Section 5 describes the visualizations that connect
users to the DDP tool.

Requirements Eng (2003) 8: 248–265
DOI 10.1007/s00766-002-0160-y

Martin S. Feather Æ Steven L. Cornford

M.S. Feather (&) Æ S.L. Cornford
Jet Propulsion Laboratory,
California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109, USA
E-mail: Martin.S.Feather@Jpl.Nasa.Gov

– Section 6 presents related work and conclusions.
– The Appendix provides further details of the DDP

model together with fragments of a detailed example.

2 DDP risk model

The simple quantitative model at the heart of DDP in-
volves just three key concepts: ‘‘Requirements’’ (what it
is that the system or technology is to achieve), ‘‘Failure
Modes’’ (what could occur to impede the attainment of
the Requirements), and ‘‘PACTs’’ (what could be done
to reduce the likelihood and/or impact of Failure
Modes; PACTs is an acronym of Preventions, Analyses,
process controls, and Tests). Requirements are related to
Failure Modes, and Failure Modes are in turn related to
PACTs. Specifically, Requirements are quantitatively
related to Failure Modes to indicate how much each
Failure Mode, should it occur, impacts each Require-
ment. Failure Modes are quantitatively related to
PACTs, to indicate how much of a Failure Mode-
reducing effect the PACT, should it be applied, has on
the Failure Mode.

In a DDP model, a set of PACTs achieves benefits
(Requirements are attained because the Failure Modes
that impact them are reduced by the selected PACTs)
but incurs costs (the sum total cost of performing those
PACTs).

More details are presented in the subsections that
follow, and further information is to be found in the
Appendix.

2.1 DDP concepts

The subsections that follow give the details of DDP’s
key concepts: Requirements, Failure Modes and
PACTs, and the Impact and Effect relationships between
them.

2.1.1 Requirements

Requirements are whatever the system under scrutiny is
to achieve, and the constraints under which it must
operate. They can be ‘‘product’’ requirements on the
system (e.g., functional behavior, run-time resource
needs), and/or ‘‘process’’ requirements (on the develop-
ment process itself, e.g., cost and schedule). Each re-
quirement is assigned a weight, representing its relative
importance to mission success, etc.

2.1.2 Failure Modes

Failure Modes are all the things that, should they oc-
cur, will lead to loss of Requirements. Each Failure
Mode is assigned an a priori likelihood (the chance of
the failure mode occurring, if nothing is done to inhibit

it). Each Failure Mode is also assigned a repair cost:
what it would cost to remove an instance of that
Failure Mode from the system. If the DDP model
makes a distinction between different time phases, the
repair cost may be different for each of those possible
time phases.

2.1.3 PACTs

PACTs are all the activities that could be done to reduce
the likelihood of Failure Modes and/or reduce their
impact on Requirements. These include preventative
measures (e.g., training, standards, selection of high-
quality parts), detections that discover instances of
Failure Modes through analysis or test (e.g., code
walkthroughs) so that those detected failure modes can
be corrected prior to release/use, and alleviations that
reduce the severity of failure modes (e.g., defensive
programming that checks its inputs to ensure they are
within specified bounds). We henceforth refer to these
different kinds of PACTs as ‘‘prevention’’, ‘‘detection’’,
and ‘‘alleviation’’ PACTs.

Each PACT is assigned a cost: the cost of performing
it. Cost may be a measure of budget, schedule, physical
attributes (e.g., weight and electrical power are pre-
dominant concerns for spacecraft), scarce resources
(e.g., skilled personnel, high-fidelity testbeds), or indeed
a mixture of these measurements. Each PACT is also
assigned the time period within the development effort at
which it would be performed (e.g., requirements phase,
design phase).

It is possible that a PACT can induce a Failure Mode.
For example, inserting error detection code can change
the run-time behavior of a system, and so risk causing
timing errors.

2.1.4 Impacts

For each Requirement x Failure mode pair, the ‘‘im-
pact’’ is the proportion of the Requirement that would
be lost if the Failure Mode were to occur. It is expressed
as a number in the range 0 1; thus 0 means no impact
whatsoever, and 1 means total loss of the Requirements.
Note that a Failure Mode may impact multiple Re-
quirements and do so to differing extents. Likewise,
multiple Failure Modes may impact a Requirement,
again to differing extents.

Impacts combine additively; e.g., if two different
Failure Modes impact the same Requirement, then their
combined impact on that Requirement is calculated as
the sum of their individual impacts.

One seemingly strange consequence of our combina-
tion rule for impacts is that a Requirement can be more
than completely impacted! For example, impacts of 0.8
and 0.7 on the same Requirement add up to a total
impact of 1.5. This is in fact a useful measure of the
amount of risk to be overcome in order to attain the
Requirement. However, when assessing how much of

249

the Requirements have actually been attained, Re-
quirements that are more than completely impacted
contribute zero (not a negative amount, note).

2.1.5 Effects

For each PACT x Failure Mode pair, the Effect is the
proportion by which the Failure Mode would be re-
duced if that PACT were applied. It is expressed as a
number in the range 0 1; thus 0 means no reduction
whatsoever, and 1 means total elimination of the Failure
Mode.

Effects combine ‘‘multiplicatively’’: when several
PACTs reduce the same Failure Mode, their combined
effect is computed as: (1)the product, for each PACT
M, of (1)M’s effect)).

Intuitively, PACTs act as ‘‘filters’’ arranged in series,
such that each PACT filters out its effect’s proportion of
the Failure Modes that enter it. See Fig. 1 for an ex-
ample in which a PACT with an effect of 0.8 on some
Failure Mode and another PACT with an effect of 0.3
on that same Failure Mode are each applied.

Note that the order in which these PACTs are applied
does not matter.

As was the case for impacts, a PACT may effect
multiple Failure Modes and do so to different extents,
and a Failure Mode may be ‘‘effected’’ by multiple
PACTs, again to different extents.

PACTs that induce Failure Modes are taken into
account by having them increase the likelihood of those
Failure Modes. Again, the degree of this influence is
expressed as a number in the range 0)1. For a Failure
Mode with likelihood L, and PACT with inducing effect
of E, the new likelihood is calculated as
(1)(1)L)*(1)E)). Intuitively, if the Failure Mode was
going to occur anyway or it is induced by the PACT (or
both), then it will occur. Since the likelihood of (P1 or
P2)=(1)(Likelihood of P1)*(1)Likelihood of P2)), we
get the formula above. Thus at the extremes for the
PACT’s inducing effect E, 0 means no increase, and 1
means increase to certainty.

For example, if L=0.4 and E=0.7, this calculation is:
(1)(1)0.4)*(1)0.7))=(1)0.6*0.3)=0.82.

Note that it does matter in which order Failure Mode
reducing PACTs interleave with Failure Modes inducing
PACTs. For example, consider a ‘‘perfect’’ PACT (one
that reduces a Failure Mode’s likelihood) and a Failure
Mode inducing PACT. If the perfect PACT follows the
inducing one, the Failure Mode will be eliminated con-
versely, the inducing PACT will cause the Failure Mode
to occur after the point at which the perfect PACT has
had a chance to apply. In practice, we assign PACTs to
distinct time phases, and organize the calculations so
that for PACTs of a given phase all the likelihood-re-
ducing effects are calculated first (the relative order of
which does not matter), and all the likelihood-increasing
effects are calculated second (again, the relative order of
which does not matter). This means that the Failure
Modes induced within a time phase can be reduced only
by PACTs of later time phases.

One of the reviewers made the suggestion that, when
possible, the ordering of PACTs could be deliberately
chosen to optimize their net effect. For example, given
two PACTs that could be applied in either order, choose
the ordering that puts first the PACT that induces
Failure Modes. This would be an interesting extension
to the current DDP implementation.

2.2 Calculations

In a DDP model, a set of PACTs achieves benefits
(Requirements are met because the Failure Modes that
impact them are reduced by the selected PACTs), but
incurs costs (the sum total cost of performing those
PACTs).

The measure of benefit of a DDP model is calculated
as the sum of the weighted requirements’ attainment.
The measure of cost of a DDP model is calculated as the
sum of the costs of the PACTs selected for application,
plus the sum of the costs of repairs of the Failure Modes
that detection PACTs discover. Both of these measures
take into account the detrimental impact of Failure
Modes on Requirements, moderated by the effect of
PACTs at reducing Failure Modes’ likelihoods and/or
severities.

Fig. 1 DDP PACTs act like
‘‘filters’’ in series

250

The essential aspects are the calculation of Failure
Modes’ likelihoods and severities (in the course of which
costs of PACTs and repairs are accumulated), followed
by the calculation of Requirements’ attainment. These
are described next.

2.2.1 Failure mode likelihoods and severities

The calculation of each Failure Mode’s likelihood starts
from its a priori likelihood value. At each time phase,
the effects on it of that phase’s prevention and reduction
PACTs reduce its likelihood. As discussed earlier, a
PACT acts as a ‘‘filter’’ to remove some proportion of
the Failure Mode. In the course of this calculation, the
reduction in likelihood attributable to detection PACTs
incurs a repair cost. This is the repair cost attributed to
the Failure Mode at that phase, multiplied by the pro-
portion by which the PACT reduces the Failure Mode’s
likelihood.
Example Consider a Failure Mode (e.g., a require-
ments flaw) that costs $100 to repair at requirements
formulation time. Suppose a PACT (e.g., requirements
inspection) has an effectiveness of 0.7 against that Fail-
ure Mode. If the Failure Mode’s likelihood prior to
application of the PACT is 0.9, then after it will be
0.9*(1)0.7)=0.27. The reduction in likelihood is
0.9)0.27=0.63, and so the repair cost is
$100*0.63=$63. An equivalent and more direct calcu-
lation of this is to simply multiply the Failure Mode’s
unit repair cost ($100) by its likelihood prior to PACT
(0.9) by the PACT’s effect on that Failure Mode (0.7):
$100*0.9*0.7=$63.

The PACTs of a time phase that induce failure modes
are taken into account after all the PACTs of that phase
that reduce failure modes. Their contribution is calcu-
lated using the combination rule discussed in the Effects
subsection earlier.

The severity reductions attributable to alleviation
PACTs are also calculated phase by phase, using
the same kind of calculation as prevention PACTs,
but decreasing Failure Mode severities rather then
likelihoods.

2.2.2 Requirements attainment

The ideal requirements attainment is simply the sum of
the weights of all the requirements. This ideal would
only be achieved if all the failure modes were completely
mitigated, by reducing their likelihoods and/or severities
to zero.

The actual attainment of a requirement, taking into
account Failure Modes and PACTs, is its weight*(1)the
proportion to which it is at risk, capped at 1). The
proportion to which it is at risk is the sum over all
Failure Modes of each Failure Mode’s (likelihood*se-
verity*impact on that Requirement). As mentioned
earlier, this sum can exceed 1, hence the need to cap it at
1 in this calculation. The Failure Modes’ likelihoods and

severities are calculated as described in the previous
subsection.
Example Consider a requirement with weight 100
that is at risk due to two Failure Modes. Suppose
that after taking PACTs into account the first
Failure Mode has likelihood 0.9, severity 0.5, and
impact 0.5, and the second has likelihood 0.4,
severity 1.0, and impact 0.3. This requirement’s attain-
ment is thus (100*(1)((0.9*0.5*0.5)+(0.4*1.0*0.3))))=
(100*(1)(0.225+0.12)))=(100*(1)0.345))=65.5.

3 DDP usage

3.1 Expert involvement

The success of a DDP application is crucially dependent
on the involvement of experts. Their combined expertise
must encompass:
Requirements:

– driving needs/goals/objectives (e.g., in our setting,
the science mission objectives driving the need for an
instrument’s capabilities);

– environmental constraints on resources available to
the system (e.g., RAM, power);

– environmental constraints on the extent to which the
system can impact its environment (e.g., electro-
magnetic fields).

Failure Modes:

– development problems (inability to construct, test,
repair, operate and maintain the system);

– the multitude of ways the operating system can fail
to meet requirements.

PACTs:

– preventative measures that can be employed to re-
duce the likelihood of problems arising in the first
place (e.g., coding standards, training, use of qual-
ified parts);

– detections that can be employed to uncover the
presence of problems prior to fielding and use of the
system (e.g., inspections, reviews, analyses, tests);

– alleviations that can be employed to reduce the se-
verity of failure modes (e.g., array bounds checking
coupled with appropriate responses).

Typical DDP applications have involved 10)20 ex-
perts drawn from the disciplines of mission science,
project planning, software and hardware engineering,
quality assurance, testing, risk management, etc.

DDP’s particular strength is that it can combine
inputs from this wide variety of disciplines. It uses its
relatively simple risk-based quantitative model to do
so. Certainly this model is incapable of capturing all
the nuances of a complex design. However, for early

251

decision making, it is more important to be able to
make key choices: those which if done correctly will
lead to significantly superior designs. By seeking to be
all encompassing of the relevant areas of expertise,
DDP is able to avoid pitfalls of too narrow a focus on
just the areas that are understood in depth. The sim-
plicity of the quantitative risk model means that all
areas can formulate their concerns to at least a coarse
level of fidelity, which is often all that is needed to
make key decisions.

3.2 DDP process

There is a straightforward stepwise process to building
and using a DDP model. The steps are described below.
It has been typical to require at least four sessions of 3– 4
h each to gather the DDP information for a non-trivial
technology. A facilitator is needed to direct these ses-
sions. This must be someone who both understands the
DDP process, and has a feel for the broad range of
concerns that the study must deal with. The facilitator
guides the elicitation and decision-making steps. The
DDP tool is run throughout the sessions, its screen
projected and visible to all the participants. As infor-
mation is gathered, it is entered into the tool in real time.
Someone conversant with the DDP tool controls the
tool, does data entry, switches between the various vi-
sual presentations, etc. In some studies, the same indi-
vidual has acted as both facilitator and tool controller;
in others, separate individuals have filled these two roles.

3.2.1 DDP process step 0: overview the problem
and the DDP methodology

This introductory step is to make the participants aware
of the purpose of the exercise, familiarize them with the
system/technology under study, and explain to them the
DDP process itself.

3.2.2 DDP process step 1: develop the impact
(requirements · failure modes) information

– Step 1a: develop the Requirements tree. The perti-
nent requirements are gathered and organized hier-
archically into a tree structure. The leaf
requirements need to be ‘‘weighted’’ to reflect their
relative importance. The leaves of the tree are the
individual requirements whose attainment will be
summed to yield the ‘‘benefit’’ measure of total re-
quirements attainment.

– Step 1b: develop the Failure Modes tree. The per-
tinent Failure Modes are all the things that could
possibly occur to adversely impact attainment of the
requirements gathered in step 1a. Failure Modes are
gathered and organized hierarchically into a tree
structure, the leaves of which are the individual
Failure Modes.

– Step 1c: relate the leaf Requirements to the leaf
Failure Modes. Each Requirement is to be related to
the Failure Modes that, should they occur, would
adversely impact that requirement. The relationship
is assigned a quantitative value, the ‘‘impact’’.

It is usual practice to follow a methodical approach
to elicit these impact values. For example, loop through
the Requirements one by one, for each Requirement
looping through the Failure Modes one by one to de-
termine which could possibly impact that Requirement,
and by how much.

3.2.3 DDP process step 2: develop the effect
(PACTs · failure modes) information

– Step 2a: develop the PACTs tree. The pertinent
PACTs are all the activities that could possibly be
performed to reduce the likelihoods and/or severities
of the Failure Modes gathered in step 1b. Again,
these are gathered and organized hierarchically into
a tree structure, the leaves of which are the indi-
vidual PACTs.

– Step 2b: relate the PACTs to the Failure Modes.
Each PACT is to be related to the Failure Modes
that it reduces or induces. The relationship is as-
signed a quantitative value, the ‘‘impact’’ value for
those it reduces, and the ‘‘PACT-induced failure’’
value for those it induces. Like impacts, it is usual to
follow a methodical approach when eliciting these
values.

3.2.4 DDP process step 3: decision making

Steps 1 and 2 populate the DDP model. In this final step
the populated model is used to guide decision making,
which can have multiple objectives:

– Judicious selection of PACTs. The primary deci-
sion-making objective is usually the selection of
PACTs, balancing their costs (what it will cost to
perform them) against their benefits (how much
they reduce Failure Modes, and thereby lead to
increased attainment of Requirements). The end
result will be a judicious selection of PACTs,
accompanied by a clear understanding of the
purposes of those PACTs (namely, the Failure
Modes that they reduce).

– Requirements triage and reprioritization. The model
can serve to identify problematic requirements,
namely those that the model shows to be at risk
from Failure Modes, the reduction of which is ex-
pensive. The experts assembled can use the DDP
model to guide their selection of which requirements
to abandon, or whether to reprioritize the require-
ments to better match the resources at hand. Al-
ternately, they may use the model to justify the need

252

for additional funding to improve requirements
attainment.

– Comparison of alternatives. Major alternatives can
be compared to see what it would cost to attain a
certain level of Requirements attainment for each,
and to compare the kinds of risks that each alternative
is most vulnerable to. When dealing with novel
technologies, we have found it useful to categorize
Failure Modes into those raised specifically by the
novel technology, and those that we regard as
‘‘standard’’ concerns. The former category represents
a greater uncertainty, and can hence be a key differ-
entiator between alternatives. Another key differen-
tiator is the way in which the risk profile decreases
over the time phases of a planned effort. There is a
preference for risk profiles that show early, rather
than late, reduction in risk, even if they lead to the
same end-point. The reason is that early decision-
making models contain considerable uncertainty. A
plan that reduces risk early can slip and still have
reduced risks to tolerable levels by the originally
planned launch date (Plan A in Fig. 2). The same
tolerance to slippage is not true of a plan that reduces
risk late (Plan B in Fig. 2).

– Gapanalysis (a.k.a. bottleneck analysis). The absence
of PACTs to address key Failure Modes (ones that
significantly impact the Requirements, but for which
there are few, if any, PACTs to sufficiently reduce
them) becomes apparent from a DDP model. This
information points theway to areas in particular need
of future study, for example a focused research task to
find ways to reduce key Failure Modes.

3.2.5 DDP tool support for process

The DDP tool provides modest support for users to
follow the process outlined above. The main ‘‘roadmap’’
screen, shown in Fig. 3, is a simple GUI through which
the user can get status overview, process guidance, and
process assistance:

– Current status is indicated by showing the numbers
of various items (e.g., Requirements) present in the
model.

– Guidance is available through color-coded indica-
tions of the available and recommended next pro-
cess steps.

– Assistance is in the form of clicking on a rectangle
and having the tool bring up the views relevant to
performing that substep (the radio buttons indicate
choices among major alternative presentations for a
given substep). For example, clicking the ‘‘Rqmt’’
box leads to a window layout of these three inner
windows appropriate for entry and scrutiny of
requirements:

– tree view of Requirements, with Requirements’
weights visible;

– property editor (for examination and editing of
attributes of a requirement); and

– bar chart view showing current attainment sta-
tus of each of the leaves of the Requirements
tree.

The DDP tool enforces process only to the extent of
data entry validation (e.g., the tool requires that the a
priori likelihood value assigned to a Failure Mode be a
number in the range 0 to 1). The process steps outlined
above are recommendations, not commandments. In
reality, such flexibility is necessary to allow users to
deviate from the perfect process, in which everything is
dealt with in exactly the expected order.

For example, suppose that during elicitation of Ef-
fect values (between PACTs and Failure Modes) users
are stepping through the PACTs one by one when
partway through they realize that they are missing a
Failure Mode. They must add the missing Failure
Mode to the Failure Modes tree, revisit the previously
considered PACTs to elicit possible Effects of those
PACTs on the new Failure Mode, revisit all the
Requirements to elicit possible Impacts of the new
Failure Mode on those Requirements, and then return

Fig. 2 Risk profiles

Fig. 3 DDP roadmap

253

to the Effect values to continue from where they were.
These steps form a mini-process that the tool could
(but does not presently) explicitly support. Instead, the
facilitator must know to follow a methodical approach
that is appropriate.

3.2.6 DDP process alternatives

There are ways of approaching the information elici-
tation process other than the start-from-an-empty-sheet
implicit in the standard DDP process – for example,
use of a knowledge base of known Failure Modes and
PACTs as a starting point. Indeed, we have built some
knowledge bases of such knowledge for various
spacecraft hardware and software concerns. The pro-
cess by which users start from these pre-existing
knowledge bases of DDP information is quite different,
and in need of its own process support. This is an area
of active investigation. In the area of software assur-
ance planning, we have linked the DDP tool to NA-
SA’s Ask Pete tool. The latter does estimation and
planning of software assurance activities. In our com-
bination of these, the Ask Pete tool is used to build a
first-cut model, and the DDP tool can then be used to
tailor this to the development at hand [1]. Within our
group Julia Dunphy is working on an ‘‘interview’’-like
front-end that queries the users for the broad charac-
teristics of their mission (e.g., earth orbit, inner planets
or outer planets? orbiter or lander?) the answers to
which direct which subsets of the knowledge base to
bring into play. Adjustments to the tool to support
these alternative processes (e.g., more support for
searching, selecting and culling from pre-existing
datasets) will likely be needed.

3.2.7 Emergent good practices

There are skills to using DDP that we have developed
but not codified in any formal process. We have found
that in eliciting information from a group of experts, we
can use disagreement to guide the need for refining the
information. For example, if there is disagreement about
the impact of a Failure Mode on a Requirement, this
almost always stems from those experts thinking of
different cases (e.g., the impact in the ‘‘nominal’’ sce-
nario, vs. the impact in a high-criticality scenario).
Subdividing the Failure Mode and/or the Require-
ment into multiple subcases, and assigning appropri-
ately different impact values to each, resolves these
disagreements.

Similarly, agreement indicates the lack of need to
subdivide into greater depth. We do not always recog-
nize the latter in advance, resulting in subcases that we
find are being assigned the same values. When this oc-
curs, we simply delete the myriad of subcases, and make
do with the parent. This gives us confidence in the
results, reminiscent to performing a calculation to N+1
significant digits in order to emerge with an answer that

we know is correctly rounded to N significant digits. It
is, however, wasteful of time. Given that a DDP session
involves the simultaneous presence of multiple experts,
we are motivated to make the best use of their time.

Overall we see as key the drive towards a common
understanding, and an identification of distinctions
when these are relevant to the decisions being made.

3.2.8 DDP results

We have not performed any formal experiments to
measure the overall effectiveness of DDP applications.
We know the cost: predominantly the time of the experts
involved in populating the study with data and making
decisions. For example, a typical DDP application, with
15 participants in all four of the 4-h sessions, consumes
240 h (6 work weeks) of time. We require the partici-
pation of experts. Such people are always in demand, so
this is by no means a trivial investment of time.

Cornford et al. [2] reported outcomes of DDP
applications:

To date, we have applied DDP to four component
level developments and one software development
with extremely successful outcomes. In one case, the
clarification of a major customer requirement led to
�$1.2 M savings in work not required, and a product
delivery to the customer two years earlier. In another
case, a technology targeted for termination due to a
lack of customer interest, and poor hope for success,
was rescued and is now proceeding to multiple cus-
tomer utilization. The software study led to consid-
eration of a commercial software development
environment to replace the expensive software design
practices used at NASA today. Another technology
development was discovered to be a hopeless waste of
funding given its progress, status, and team attrition
situation.

Lacking any formal study, it is impossible to attribute
these beneficial outcomes solely to DDP. Since then, the
continued voluntary use of DDP (it is not mandated by
JPL’s development principles) on further applications,
and in recent months on a large-scale project, is at least
indicative of its net value.

4 DDP information structures

DDP’s fundamental information structures to represent
the model are nodes (organized into hierarchical trees)
and links. Attributes of nodes and links hold further
information on each.

4.1 DDP nodes and links, and their attributes

There are three main types of nodes (Requirements,
Failure Modes, and PACTs), organized into hierarchical

254

trees, and two types of links (Impacts, between Re-
quirements and Failure Modes, and Effects, between
PACTs and Failure Modes).

Individual nodes and links have attribute values,
some of which are common to all (e.g., the ‘‘Descrip-
tion’’ and ‘‘Notes’’ attributes which are unbounded text
entries), some of which are common to nodes (e.g., the
‘‘Title’’ attribute, a text string of bounded length),
some common to links (e.g., the ‘‘Value’’ attribute, for
an Impact link its Impact value, for an Effect link its
Effect value, both of which are floating point numbers
in the range 0–1 or a bounded-length text string be-
ginning with certain alphabetic characters, essentially a
comment for use when a numerical value has not yet
been provided), and some of which are specific to the
type of node or link (e.g., the ‘‘Weight’’ attribute of a
Requirement).

The nodes are organized into hierarchical trees, such
that only the leaves of those trees are the nodes pertinent
to the calculations. The non-leaf nodes act like folders in
a file structure, as containers for nodes or further con-
tainers.

4.1.1 Information structures

The simplicity of the model allows DDP to accom-
modate a wide range of issues. For example, both
product and process requirements can be included in
the same model. Users have the flexibility to make
as much, or as little, use of the attributes as they
desire:

– The minimalist extreme has been simply titles for all
three types of nodes and a single kind of marker in
the value attribute of Impacts and Effects to indicate
that there is some impact or some effect. In this
mode, DDP acts in a purely qualitative manner to
implement the ‘‘Risk Balancing Profiles’’ idea of
Greenfield [3].

– For using DDP to quantitatively calculate benefits
(but not costs), users need to provide titles for all
three types of nodes, weights for Requirements, a
priori likelihoods for Failure Modes, and numerical
Impact and Effect values. Attributes such as the
textual description are not necessary, but prove
useful as a place to record more explanation (e.g., to
help understanding when revisiting the model at a
later date, or when other people read a model, akin
to comments in code). To date this has been the
most commonly adopted style of using DDP. The
lack of cost information has meant that users must
mentally estimate costs when selecting PACTs,
rather than relying on the tool to do so.

– For using DDP to quantitatively calculate both
benefits and costs, users need to provide cost in-
formation in addition to the benefit information
listed above. At a minimum, they must cost the in-
dividual PACTs. To encompass the ramifications of
the cost of detection as different from the cost of

repair, users must also provide repair costs for
Failure Modes, and indicate the type of each PACT
(detection, prevention, or alleviation).

Once the model contains both cost and benefit in-
formation, automated support to search for (near) op-
timal solutions becomes feasible. We have had success
using a machine-based learning approach [4], and in
addition we are pursuing the use of genetic algorithms
for this same purpose (discussed in [5]).

One purpose of the hierarchical organization of
nodes is to aid navigation; as the number of require-
ments increases into the tens and hundreds, finding
where a requirement is located becomes easier if they
are logically grouped. It also supports inspiration: a
category may serve as a reminder of a whole class of
requirements to consider. Finally, the DDP tool ex-
ploits this same hierarchical structure to give users
control over the level of detail they see. When they
‘‘collapse’’ a subtree (akin to closing a folder in a file
structure), the tool automatically computes the aggre-
gate of the leaves of that subtree and uses that aggre-
gate value to serve as an abstraction of the details
beneath. Views within the DDP tool itself are auto-
matically coordinated so that the user sees the same
hierarchy status in each.

An example is shown in Fig. 4, where within the
Failure Modes tree (left side) ‘‘Functional Operation
Issues’’ is a collapsed subtree. Visual cues are the tiny
‘‘+’’ box to the left, and the ‘‘closed’’ folder icon. In the
Requirements x Failure Modes matrix (right side) is a
column corresponding to this collapsed subtree. Visual
cues are the ‘‘[+]’’ in its header cell, and the gray
background, indicating that the values therein are
computed. For example, the highlighted cell between the
‘‘Get to the target’’ Requirement and the ‘‘Functional
Operation Issues’’ Failure Mode has a value of 4.1,
computed as the sum of the impact values between the
leaf Failure Modes of that entire subtree against the
Requirement.

4.1.2 Information compromises

There are many ways in which the DDP model’s simple
information structures compromise the representation of
the actual situation (system or technology under con-
sideration). We list the more notable of these:

– Uncertainties. Wherever a quantitative value is re-
quired, DDP allows for only one value to be pro-
vided. In practice, information will be uncertain,
and it would perhaps be desirable to record this
uncertainty in the model and be able to reason
about it. Towards this end, we are contemplating
extending the representation of costs to accommo-
date a trio of values: optimistic (e.g., 10th percen-
tile), median, and pessimistic (e.g., 90th percentile).
The similar treatment of impact and effect values is

255

also possible, although we are concerned that this
will significantly add to the amount of work that is
needed to populate the DDP model. The number of
cost values to ask for is linear with the number of
PACTs and Failure Modes (for repair costs).
However, the number of impacts and effect values is
in proportion to the square of the number of nodes
(Requirements, Failure Modes, and PACTs), so
clearly would be a much greater additional burden
during model population.

– Interactions between elements. The simple combi-
nation rules for impacts and for effects are a
compromise. In practice there are situations where
certain combinations will have costs/effects/impacts
that differ significantly from the value our model
would compute. In the absence of the capability to
represent and reason about these situations, we
currently rely on manual workarounds. For ex-
ample, when we know that the combination of two
PACTs M1 and M2 does not match that predicted
by our formulae, we manually add a third PACT,
M1&M2. We assign to this the combined effec-
tiveness and cost values that we believe hold for
the combination of the two. When selecting
PACTs, we are careful to select at most one of
{M1, M2, M1&M2}. Such workarounds allow us
to proceed with DDP applications, at the expense
of a small amount of additional effort.

– Logical structure to failure modes, for example, the
and/or nodes used to built fault trees as used in
probabilistic risk assessment. DDP’s cumulative
calculation of impact is a crude but useful numerical
approximation of ‘‘or’’ nodes in a fault tree. For
example, if one of the Failure Modes is ‘‘Explodes
on Launch’’, then most mission requirements will be
totally lost should this occur. We model this by
giving this Failure Mode an impact score of 1
against those requirements. ‘‘And’’ nodes are more
problematic, and require the kind of workaround

described in the previous paragraph. We recently
added and/or logical structure to DDP’s failure
modes, but have not yet had a chance to exercise
these capabilities in a DDP application.

Generally, our approach to dealing with these and
other similar information compromises is to elaborate
the DDP model if and when we find recurring need to do
so. As we continue to expand the variety of problems
that we study with DDP, we expect to have to continue
the evolution of the DDP information representation,
and the tool that supports its application.

5 Information visualization

DDP’s information visualization needs derive from
DDP’s purpose, to assist experts in their decision-mak-
ing concerning novel and complex systems. The experts
provide the information that goes into a DDP model,
and the experts make decisions based on that model
together with their further knowledge that has not nec-
essarily been incorporated into the model. Feedback
through appropriate visualization is key. It is also
challenging. For the advanced technologies and systems
that we deal with, decision making in even the early
phases commonly involves more information than can
be conveniently portrayed on the screen at once. (If there
were so little information that it could be portrayed on a
single screen, there would hardly be any need for a
special process or tool.)

In response to these needs and challenges, DDP gives
users a choice of visualizations, and modest layout
control over the individual visualizations. The visual-
izations themselves are composed of relatively standard
elements (matrices, lists, tree structures, bar charts).
Where possible these mimic the look and feel of the fa-
miliar Microsoft Windows controls. Simple GUI design
principles are followed, such as uniform cues to the users
throughout the tool For example, the use of ‘‘+’’ and
‘‘)’’ boxes or their ASCII approximations ‘‘[+]’’ and
‘‘[)]’’ denote collapsed/expanded subtrees. Color

Fig. 4 Hierarchy and aggregate values

256

conventions such as uniform use of blue for Require-
ments, red for Failure Modes, and green for PACTs
apply across most of the tool (the user can change this
default choice of colors).

5.1 Visualization for node hierarchies

The primary visualization for node hierarchies is the
Tree View, shown in Fig. 5 (annotated with ‘‘help’’ in-
formation). Its visual cues include:

– ‘‘+’’ and ‘‘)’’ boxes, together with closed/open
folder icons to indicate collapsed or expanded sub-
trees;

– blue color (reproduced here as light gray) to remind
the user this is a tree of Requirements;

– white/gray backgrounds of the slot values to denote
user-editable/computed values. For example, the
Weight of the Primary Mission Requirement, 38, is
computed as the sum of the weights of the leaf re-
quirements within its subtree.

– colored-in items to indicate the current ‘‘focus’’ on a
particular requirement (number 2, ‘‘Get to the tar-
get’’, alongside which is a blue circle – reproduced
here as a light gray colored circle) and its heritage
(child of number 1, ‘‘Primary Mission’’, alongside
which is a blue filled-in folder – reproduced here as a
light gray filled-in folder).

Users control over the layout includes:

– selection of the kind of Requirements attribute
shown in the slots (in Fig. 5 it is set to show the
Weights attribute values);

– whether to view just the checked (a.k.a., ‘‘selected’’
Requirements), the unchecked ones, or both (in
Fig. 5 it is set to show both);

– selection of font size, etc. This seemingly trivial
feature is very useful to allow the user to tune the
DDP display to the situation. For example, when
using DDP in a group setting, the image is projected
on a screen visible to all, and so the font size has to
be set to make the text legible to all. Alternately,
when using DDP on a single workstation, a user
may wish to set the font size to the smallest that he/
she can read, so as to squeeze as much information
as possible onto the screen at once.

In the DDP process a significant amount of time is
spent working with this tree view. It is central to

Fig. 5 DDP tree view

Fig. 6 DDP matrix view

257

developing DDP’s three trees, of Requirements, Failure
Modes, and PACTs.

3.2 Visualizations for links

DP information includes Impact links between Re-
quirements and Failure Modes, and Effect links between
PACTs and Failure Modes. DDP offers two main vi-
sualizations for these links: a ‘‘matrix’’-like presentation
(Fig. 6) and a ‘‘stem and leaf’’-like presentation (Fig. 7).
Motivation for the use of each derives from DDP’s
leaning towards simplicity and volume. DDP’s links are
between only pairs of nodes (there are no three-way
links, or links connected to other links, for example).

While each DDP link can have multiple attributes (e.g.,
Description, Reference) associated with it, of these only
the Value (Impact or Effect) is essential to display for
multiple links at once. Typical DDP models contain
possibly hundreds of nodes of each of the three main
DDP types (Requirements, etc.), so the number of links
of a given type can be in the thousands.

The matrix view is good for showing the correspon-
dence between the link values (shown in the inner cells of
the matrix) and the nodes they link (shown in the hier-
archical header row and column cells of the matrix).
However, in practice we find that DDP models have
relatively sparse matrices (ranging from 5% to 30% fil-
led), for which matrices are wasteful of space (lots of
blank cells).

Fig. 7 DDP stem and leaf view

Fig. 8 Topology of a DDP model

258

The general form of a ‘‘stem and leaf’’ style of infor-
mation presentation is described in Tufte [6], who attri-
butes this form of plot to Tukey [7]. At JPL, Denise
Howard (JPL) and Christopher Hartsough introduced
its use in their prototype of the ‘‘Risk Balancing Profiles’’
(RBP) concept [3]. Roughly speaking, RBP is a subset of
DDP: it has the equivalent of just DDP’s Failure Modes
and PACTs. Furthermore, RBP is purely qualitative. Its
Failure Modes’ severities are user-assessed qualitative
values (rather than being derived from their aggregate
impact on requirements), and its links between PACTs
and Failure Modes indicate only the existence of reduc-
ing effects, not their magnitudes. This was seen as a
natural precursor to DDP, and we arranged to permit
RBP’s information to be transferable into DDP [8].

We adopted RBP’s stem and leaf style of presenta-
tion for DDP, elaborating it to indicate DDP’s quali-
tative information. Effects links are shown portrayed in
this manner in Fig. 7. The numbered wider rectangles
form the ‘‘stem’’ of the display, each corresponding to

a PACT. Alongside each are numbered smaller rect-
angles, corresponding to the Failure Modes that PACT
effects. Quantitative information is conveyed by the
width of the smaller rectangle, proportional to its link’s
Effect value.

This view is good as a concise display of a large
number of the extant links, but compared to the matrix
view is less successful at displaying the hierarchies of the
nodes being linked. We do not make use of the more
free-form graph views common to many other require-
ments engineering methods and tools (e.g., the hypertext
graphs of gIBIS [9]; the class diagrams of UML; the
influence diagrams of i* [10]; goal graphs [11]). These
seem better suited to models that are smaller but more
topologically complex than DDP’s. Figure 8 shows a
DDP model drawn using explicit links; while the layout
is naı̈ve (there has been no attempt to reorder nodes to
disentangle the links), it does serve to convey the nature
of DDP models as being simple in structure but verbose
in content.

Fig. 9 DDP bar chart of failure
modes

Fig. 10 DDP 2-dimensional plot
of failure modes as risks

259

5.3 Visualizations for results of DDP calculations

Visualizations of the results of DDP’s calculations
are available to support the decision-making step of
the DDP process (Section 3.2.4). These include a
simple display of overall cost and benefit figures, bar
chart displays to indicate status of Requirements,
Failure Modes and PACTs, and two-dimensional plot
of the risk (severity x likelihood) status of Failure
Modes.

Figure 9 shows the bar chart (histogram) display for
Failure Modes. Each bar corresponds to a Failure
Mode. The height of the red portion (reproduced here as
dark gray) of a Failure Mode’s bar indicates its sum
total impact on Requirements, taking into account the
effect of currently selected PACTs. The top of the green
portion (reproduced here as light gray) indicates where
its sum total impact level used to be, when no PACTs
were selected. Thus the green portion corresponds to the
risk savings of the current selection of PACTs, and the
red portion the currently extant risk of that Failure
Mode. Sorting in descending order of the extant risk
(i.e., in decreasing height of red portions) is a Pareto-like
activity, allowing users to focus their attention on the
most significant remaining risks. Also, it prevents acci-
dentally overlooking significant risks in a large popula-
tion of risks.

Figure 10 shows a two-dimensional plot of Failure
Modes as risks. The axes of the plot are likelihood and
severity (each a log scale); Failure Modes (represented
by small black squares) are located accordingly. This
gives a more compact view of the Failure Modes, and
makes visible their breakdown into likelihood and se-
verity. (Note, however, that it compromises the DDP
tool color convention where red is to represent Failure
Modes, and green PACTs; instead, this chart follows the
common ‘‘traffic light’’ pattern of using red (the upper
right triangular region, reproduced here as dark gray) /
yellow (the middle band, reproduced here as light gray) /
green (the large lower-left region, reproduced here as an
intermediate gray) to denote risk categories of decreas-
ing magnitude. Of course, most Failure Modes make
their way from the red area to the green area thanks to
PACTs, so perhaps this is not so divergent after all.)

5.4 Visualization challenges

The DDP visualizations significantly aid users in their
decision-making tasks, by presenting the status of a
DDP model (overall costs and benefits, and the status of
individual elements such as Failure Modes).

However, much of the decision-making rests on the
comparative costs and benefits of PACT selections.
None of the visualizations of the current DDP tool at-
tempt to display this selection space. To do so is a
daunting task: consider that for N PACTs, there are 2N

such selections, and a typical DDP model has dozens,
possibly hundreds of PACTs.

There is clearly a need for further work to connect
visualization with the automated search for near-
optimal PACT selections. Some preliminary steps
in this direction are the plots in Feather and Menzies
[4].

6 Related work and conclusions

The DDP model has some similarity with a number of
other models of systems. We briefly discuss several of
these below.

6.1 Qualitative decision support methods

Early decision making is often assisted by qualitative
decision support methods. Quality Function Deploy-
ment (QFD) is prominent among these, and has been
used in a wide variety of settings [12]. DDP’s effect and
impact matrices are reminiscent of the Relationship
Matrix used in many forms in QFD.

DDP is distinguished by its foundation upon a
quantitative risk model, which gives meaning to DDP’s
cost and benefit calculations.

6.2 Estimation models

COCOMO and COQUALMO are models to predict
factors such as cost and quality based on inputs that
characterize the development at hand [13]; the stochastic
model in Stutzke and Smidts [14] is similar.

Generally, estimation models such as these are
‘‘closed’’, in the sense that they are not intended to be
extended with new factors (although they do encour-
age the tuning of these models to a given organiza-
tion). In contrast, the DDP model is ‘‘open’’, relying
on expert users to input and link the factors that are
relevant to the development at hand during DDP
sessions. We have explored a mix of these approaches,
by linking the DDP tool to NASA’s Ask Pete tool.
The latter does estimation and planning of software
assurance activities. In our combination of these, the
Ask Pete tool is used to build a first-cut model, and
the DDP tool can then be used to tailor this to the
development at hand [1].

6.3 Goal models

The software engineering research community has
shown increasing interest in models of ‘‘goals’’ (roughly
speaking, precursors to requirements). See the mini-
tutorial [11] for an overview of this area. We discuss two
of these kinds of models:

The KAOS framework for goals, requirements,
etc. [15] is used to built a logical structure of how

260

system-wide requirements decompose to, ultimately,
requirements on the individual components in a system.
Models built in this framework seem well suited to
exploring the functional behavior and, to some extent,
non-functional aspects. DDP models are weaker in that
they lack the logical structure of KAOS models, but
conversely have emphasizedmore the quantitative aspects
that predominate in imperfect solutions.

The i* framework [10, 16] combines logical structures
with qualitative models. Their combination rules for
these qualitative models support well tradeoff analysis
between major design alternatives. DDP models seem
more appropriate when there are a large number of
small alternatives.

6.4 Bayesian nets/influence diagrams

Influence diagrams (a form of Bayesian nets) offer a
general framework in which factors can be combined
to assess designs and study alternatives. For example,
they are used in Burgess et al. [17] to compute the
utility of requirements that are candidates for inclu-
sion in the next release of a piece of software. In
principle it would seem that a DDP model could be
represented as an influence diagram, with a relatively
‘‘flat’’ topology. However, as was seen in Fig. 8, typ-
ical DDP applications give rise to rather voluminous
such models. DDP is perhaps more appropriate to
decision making when a multitude of factors must be
considered.

6.5 Requirements prioritization

Requirements prioritization has also emerged as a topic
of interest within both academia and industry. Karls-
son and Ryan developed a ‘‘cost-value’’ approach to
prioritizing requirements [18]. At the heart of their
approach is a cost-value diagram, which plots each
requirement’s relative value and implementation cost,
facilitating the selection of an appropriate subset of
requirements.

The WinWin project [19] supports multiple stake-
holders to identify conflicts between their respective
evaluations of requirements, and to locate feasible
solutions that are mutually satisfactory combinations
of requirements. This approach is supported by a
custom tool, the benefits of which are reported in
Boehm [20].

These examples typify approaches in which users are
asked to directly estimate the costs and benefits of in-
dividual requirements. Significant interactions among
requirements, for example, if two requirements can be
achieved by sharing the same solutions to sub-problems,
complicate this task. DDP approaches this problem by
explicitly relating requirements to failure modes, and in
turn failure modes to PACTs.

6.6 Probabilistic risk assessment

The term ‘‘Probabilistic Risk Assessment’’ (PRA) en-
compasses a mature and widely used set of techniques
for conducting quantitative risk assessments. For ex-
ample, the fundamentals of fault trees are described in
Vesely et al. [21]. Originating in the nuclear power in-
dustry, PRA techniques are now regularly applied in
nuclear, process, chemical, petroleum, aerospace, and
other industries. Generally these approaches presup-
pose the existence of a detailed design. One of the
challenges for PRA techniques is application early in
the life cycle, most especially in the formative stages of
development, when the system design is incomplete,
immature and/or still in flux. DDP is intended for this
kind of situation. Furthermore, DDP emphasizes not
just risk assessment, but also planning for what can be
done to reduce risk.

6.7 Conclusions

We have outlined the DDP model, designed to fill the
early-life cycle niche in failure mode-based estimation
and planning. DDP thus complements a number of
other modeling techniques.

DDP involves just three key concepts: ‘‘Require-
ments’’ (what it is that the system or technology is to
achieve), ‘‘Failure Modes’’ (what could occur to impede
the attainment of the Requirements), and ‘‘PACTs’’
(what could be done to reduce the likelihood and/or
impact of Failure). Requirements are qualitatively re-
lated to Failure Modes, and Failure Modes are in turn
qualitatively related to PACTs.

Custom tool support facilitates the use of this model
when relatively large numbers of items are involved, and
a simple process guides the overall application of DDP.

DDP has been successfully applied in early life cycle
decision making. It appears well suited to applications
where a multitude of factors must be considered si-
multaneously. We fully expect use of DDP to contin-
ue. We also anticipate that the DDP model will
continue to evolve in response to the needs of new
applications.

6.8 DDP further reading

We have published several accounts of DDP in confer-
ence and workshop papers.

For an overview of DDP and its applications, see
Cornford et al. [2]. More recent directions are described
in Cornford et al. [5]. Application to software develop-
ment is discussed in Cornford [22] and to software
assurance in Feather et al. [23].

Crafting the ‘‘look and feel’’ of DDP to support us-
ers’ tasks has been a concern all along. Key decisions are
reported in Feather et al. [24] and issues related to
scalability are reported in Feather et al. [25].

261

The transition from a qualitative model to a quanti-
tative model is explored in Feather et al. [8].

Experiments using Menzies’ machine-learning based
techniques for automated optimization with DDP
models are reported in Feather and Menzies [4].

Up-to-date information on DDP, including the abil-
ity to request a copy of the program, can be found at
http://ddptool.jpl.nasa.gov.

Acknowledgements The research described in this paper was
carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics
and Space Administration. Reference herein to any specific com-
mercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not constitute or imply its en-
dorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology. Contributions
from, and discussions with, Phil Daggett (JPL), Julia Dunphy
(JPL), Patrick Hutchinson (Wofford College, Spartanburg, SC),
Ken Hicks (JPL), Christopher Hartsough (JPL), Denise Howard
(JPL), Peter Hoh In (Texas A&M), John Kelly (JPL), Tim Kurtz
(NASA Glenn), James Kiper (Miami University, OH), Tim Lar-
son (JPL), Tim Menzies (University of British Columbia), Kelly
Moran (JPL) and Burton Sigal (JPL) have been most useful in
helping us formulate our ideas and bring them to fruition.

Appendix: DDP concepts and example

Requirements are whatever the system under scrutiny is
to achieve, and operational constraints on the system’s
construction and operation. Each requirement has a
title, a position in the Requirements tree, a weight

(representing its relative importance), on/off status, and
optional further information such as description, notes,
and reference. Only those Requirements whose status is
on are taken into account in the qualitative calculations.

Failure Modes are the things that, should they occur,
will lead to lack of attainment of Requirements. Each
Failure Mode has a title, a position in the Failure Modes
tree, an a priori likelihood (the chance of the Failure
Mode occurring, if nothing is done to inhibit it), a repair
cost per phase (what it would cost to remove an instance
of that Failure Mode at that phase in the project), on/off
status, and optional further information such as
description, notes, and reference. Only Failure Modes
whose status is on are taken into account in the quali-
tative calculations.

PACTs are the activities that could be done to reduce
the likelihood of Failure Modes and/or reduce their im-
pact onRequirements. EachPACThas a title, a position in
the PACTs tree, a cost, the phase in which it applies, on/off
status, and optional further information such as descrip-
tion, notes, and reference. PACTs are classified into pre-
ventions (which reduce the likelihood of Failure Modes),
detections (which discover instances of failure modes so
that those detected failuremodes can be corrected prior to
release/use), and alleviations (which reduce the severity of
FailureModes). Only those PACTs whose status is on are
taken into account in the qualitative calculations, with the
exception of calculations specifically to reveal what would
be the net effect (in terms of risk reduction) were an ‘‘off’’
PACT to be turned on.

Impacts are the qualitative relationships between
Requirements and Failure Modes. Each impact has the
Requirement and Failure Mode it links, a value repre-
senting the proportion of loss of attainment of the

Fig. 11 Requirements, failure modes and impact matrix, between
requirements (rows) and failure modes (cols)

262

Requirement should the Failure Mode occur, and op-
tional further information such as description, notes, and
reference. The value may be non-numeric, in which case
although it shows up on displays it is ignored in the
quantitative calculations; the usual use for this is as a
placeholder and reminder for further scrutiny (e.g., a
value ‘‘to be determined’’).

Effects are the qualitative relationships between
PACTs and Failure Modes. Each impact has the PACT
and Failure Mode it links, a value representing the
proportion of reduction of the Failure Mode should that
PACT be applied, and optional further information such
as description, notes, and reference. If the value is neg-
ative, it denotes an effect of increasing, rather than

decreasing, a Failure Mode’s likelihood. As for impacts,
the value may be non-numeric, and if so is ignored in
quantitative calculations.

We use a hypothetical example for illustration. This
avoids any proprietary issues that would arise from re-
porting one of the actual DDP applications, and permits
the use of somewhat smaller amounts of data than
would arise in practice. Nevertheless, this example will
serve to illustrate the elements of DDP referenced
throughout the paper. The figures are annotated frag-
ments of screenshots taken from the DDP tool running
on this example.

Figure 11 shows the Requirements tree, the Failure
Modes tree, and the matrix of Impact values between
these trees’ elements. The blue coloring (reproduced
here as the darker gray border of the highlighted row
and background of its header cells) highlights one of

Fig. 12 PACTs and effect matrix, between PACTs (rows) and
failure modes (cols)

263

the Requirements, ‘‘Get to the target’’, and the red
coloring (reproduced here as the darker gray border of
the highlighted column and background of its header
cells) highlights one of the Failure Modes, ‘‘Tolerance
Issues’’.

The matrix header rows and columns show the titles
of the items, and some totals computed by DDP.

The third row down contains values (39.4, 39.4,
15.9, etc.) that are the computed totals of loss of
Requirements attainment that each Failure Mode
causes. For a given Failure Mode F, this value is
computed as:

F. APrioriLikelihood*R(R2AllRequirements):
R.Weight*Impact(F,R) where Impact(F, R) is the im-
pact value of Failure Mode F on Requirement R (zero if
there is no numerical impact asserted between them).
For the highlighted Failure Mode, the calculation is:

1*((10*0.3)+(10*0.1)+(10*0.1)+(10*0.3)+
(8*0.7)+(2*1.0)+(3*0.1))=3+1+1+3+5.6+2+
0.3=15.9

The third column across contains values (71, 73, 78,
etc.) that are the computed totals of loss of each Re-
quirements Attainment caused by Failure Modes. For a
given Requirement R, this value is computed as:

R.Weight*R(F2AllFailureModes):Impact(F,R)*
F.APrioriLikelihood

In the example data, all FM’s a priori likelihoods are
1, so for the highlighted Requirement, this calculation is:

10*((0.3*1)+(0.3*1)+(0.3*1)+(0.3*1)+(1.0*1)+
…)=10*(0.3+0.3+0.3+0.3+1.0+0.3+1.0+1.0+0+
0+0.1+0.7+0.1+0.7+1.0)=10*7.1=71

These are the totals for risk in the extreme case that
nothing is done to prevent the Failure Modes from oc-
curring. The first requirement has an assigned weight of
10, while its loss of attainment is calculated as 71,
indicating that it is more than totally at risk.

This example’s tree of PACTs is shown in Fig. 12
(top). PACTs’ costs are listed in the column to the left of
the tree. PACTs’ effects on reducing Failure Modes are
shown in the matrix in Fig. 12 (bottom). The green
coloring (reproduced here as the darker gray border of
the highlighted row and background of its header cells)
highlights one of the PACTs ‘‘Environmental Tests’’,
and the red coloring (reproduced here as the darker gray
border of the highlighted column and background of its
header cells) highlights one of the Failure Modes,
‘‘Tolerance Issues’’.

For the sake of illustration, we have checked those
and only those PACTs in the ‘‘Tests’’ folder. DDP
calculates their combined cost (176) and combined
effect on reducing the likelihood of the Failure Modes.
For example, the highlighted Failure Mode is effected
by three of those PACTs: 0.7 by Environmental Tests,
0.7 by Functional Tests, and 0.9 by Component Test/
Characterize. These are all detection-style PACTs,
meaning that their effect is to reduce Failure Modes’
likelihoods.

For a Failure Mode F, its ‘‘PACTed’’ likelihood, i.e.,
taking into account effects of PACTs, is computed as:

F.AprioriLikelihood*(P(P2PACTs when P.Status=
On): (1)Effect(P, F))

(If there are PACTs that induce Failure Modes, then
a slightly more complicated formula must be used.)

For the highlighted Failure Mode, and the five
checked PACTs in the Tests folder, the calculation is:

1*((1–0.7)*(1–0.7)*(1–0.9)*(1–0)*(1–0))=1*(0.3*0.3*
0.1*1*1)=1*0.009=0.009

This was the Failure Mode whose (unreduced) total
contribution to loss of Requirements attainment we
calculated earlier to be 15.9. The corresponding
‘‘PACTed’’ calculation that takes into account the
beneficial effects of the selected PACTs, substituting the
Failure Mode’s ‘‘PACTed’’ likelihood for its a priori
likelihood, thus:

F. PACTedLikelihood*R (R2AllRequirements):
R.Weight*Impact(F, R)

For the highlighted Failure Mode this is
0.009*15.9=0.1431, i.e., considerably reduced.

Because these PACTs were all detections, the reduc-
tion in likelihood of this Failure Mode is accomplished
by repairing (prior to launch of course!) the problems
those PACTs detect. DDP takes this into account in
computing the sum total costs. Repair costs for a Failure
Mode F detected and repaired in phase PH are calcu-
lated as: (F.PACTedLikelihood prior to PH)F.PACT-
edLikelihood after PH)*F.RepairCost (PH).

In the example data, Tolerance Issues’ RepairCost in
the test phase is 250, so DDP computes its cost of repair
due to these PACTs as: (1)0.009)*250=247.75. PACTs
from the Preventative Measures folder are prevention
PACTs, so would avoid incurring repair costs such as
these, and leave far fewer such problems for detection
and repair.

These fragmentary examples illustrate DDP’s core
calculations. Their results are displayed to users via bar
charts (e.g., Fig. 9) and the risk region plot (Fig. 10)
shown earlier, the overall aim being to aid users in their
decision making.

References

1. Kurtz T, Feather MS (2000) Putting it all together: software
planning, estimating and assessment for a successful project. In:
Proceedings of 4th international software and internet quality
week conference, Brussels, Belgium

2. Cornford SL, Feather MS, Hicks KA (2001) DDP: a tool for
life-cycle failure mode management. In: IEEE Aerospace
Conference, Big Sky, MT, 2001, pp 441–451

3. Greenfield MA (n.d.) Risk balancing profile tool. http://
www.hq.nasa.gov/office/codeq/risk/rbp.pdf

4. Feather MS, Menzies T (2002) Converging on the optimal at-
tainment of requirements. In: Proceedings IEEE joint interna-
tional requirements engineering conference, Essen, Germany,
2002, pp 263–270

5. Cornford SL, Dunphy J, Feather MS (2002) Optimizing
the design of end-to-end spacecraft systems using failure
mode as a currency. In: IEEE aerospace conference, Big Sky,
MT

6. Tufte ER (1983) The visual display of quantitative information.
Graphics Press, Cheshire, CT

264

7. Tukey J (1972) Some graphic and semigraphic displays. In:
Statistical papers in honor of George W. Snedecor. Iowa State
University Press, Ames, IA

8. Feather MS, Cornford SL, Larson T (2000) Combining the best
attributes of qualitative and quantitative risk management tool
support. In: Proceedings, 15th IEEE international conference
on automated software engineering, Grenoble, France, 11–15
September 2000. IEEE Computer Society, pp 309–312

9. Conklin J et al (2001) Facilitated hypertext for collective
sensemaking: 15 years on from gIBIS. Hypertext ’01 confer-
ence, Aarhus, Denmark, 14–18 August 2001

10. Chung L, Nixon BA, Yu E, Mylopoulos J (2000) Non-func-
tional requirements in software engineering. Kluwer, Dordr-
echt

11. van Lamsweerde A (2001) Goal-oriented requirements engi-
neering: a guided tour. In: Proceedings 5th IEEE international
symposium on requirements engineering, Toronto, Canada,
August 2001, pp 249–263

12. Akao Y (1990) Quality function deployment. Productivity
Press, Cambridge, MA

13. Boehm B et al (2000) Software cost estimation with COCOMO
II. Prentice-Hall, Englewood Cliffs, NJ

14. Stutzke MA, Smidts CS (2001) A stochastic model of fault
introduction and removal during software development. IEEE
Trans Reliability 50(2):184–193

15. Bertrand P, Darimont R, Delor E, Massonet P, van Lamswe-
erde A (1998) GRAIL/KAOS: an environment for goal driven
requirements engineering. In: 20th international conference on
software engineering, Kyoto, Japan

16. Mylopoulos J, Chung L, Liao S, Wang H, Yu E (2001) Ex-
ploring alternatives during requirements analysis. IEEE Soft-
ware 18(1):92–96

17. Burgess CJ, Dattani I, Hughes G, May JHR, Rees K (2001)
Using influence diagrams to aid the management of software
change. Requirements Eng 6(3):173–182

18. Karlsson J, Ryan K (1997) A cost-value approach for priori-
tizing requirements. IEEE Software September/October:67–74

19. Boehm B, Bose P, Horowitz E, Lee M (1994) Software re-
quirements as negotiated win conditions. In: Proceedings 1st
international conference on requirements engineering, Colora-
do Springs, CO, pp 74–83

20. In H, Boehm B, Rodgers T, Deutsch M (2001) Applying
WinWin to quality requirements: a case study. In: Proceedings
23rd international conference on software engineering,
Toronto, Ontario, Canada, pp 555–564

21. Vesely WE, Goldberg FF, Roberts NH, Haasl DF (1981) Fault
tree handbook. US Nuclear Regulatory Commission, NU-
REG-0492

22. Cornford SL (2000) Design and development assessment. In:
Proceedings, 10th IEEE international workshop on software
specification and design, San Diego, CA, 5–7 November 2000.
IEEE Computer Society, pp 105–114

23. Feather MS, Sigal B, Cornford SL, Hutchinson P (2001) In-
corporating cost–benefit analyses into software assurance
planning. In: Proceedings, 26th IEEE/NASA software engi-
neering workshop, Greenbelt, MD, 27–29 November 2001

24. Feather MS, Cornford SL, Gibbel M (2000) Scalable mecha-
nisms for requirements interaction management. In: IEEE
international conference on requirements engineering,
Schaumburg, IL

25. Feather MS, Cornford SL, Dunphy J, Hicks K (2002) A
quantitative risk model for early lifecycle decision making. In:
Integrated design and process technology, Pasadena, CA, June
2002

265

